Metallization in the Electronics Industry

- Metallization is the cornerstone for manufacturing and operation of nearly all electronic devices, from solar panels to TFTs
- Advances in core technology such as display, sensors, and advanced semiconductor node/packaging is dependent on thin-film metallization
- Metallization is complex, and requires cooperative approach with materials chemistry (or rheology), surface science, and equipment expertise
- Conventional Metallization approaches include Sputter (PVD), CVD/ALD, Plating, LDS
 - Technology Limitations: Temperature, LOS/non-orthogonal parts, highly toxic, will require patterning/etching
 - TCO Limitations: Lower HVM, high tooling/utility costs, limits on implementation
- Competing approach is using metal inks

electror

Features of NPs and MODs

Metric	NPs	MODs	
Film Purity	Limited: 95 – 97% Ag	Excellent: semiconductor grade at >99.99% Ag	
Solid Loading	Excellent: Up to 98% wt Ag	Limited: 12 – 50% wt Ag	
Film Reliability	OK: 10 – 40% ΔR for 85/85 1000 hours	Excellent: 0% ΔR for 85/85 1000 hours	
Curing Temperature	OK: Typically >150C for > 30 minutes	Excellent: 100 – 180C for 1 – 20 minutes	
HVM – Low Viscosity	Limited: Nozzle clogging, low print times (hours)	Excellent: Print time of >20 days	
HVM – High Viscosity	Excellent: Well-suited for screen/stencil printing	Limited: Typically impossible; EI has succeeded at 30,000 cPs	
Fine Patterning	Limited: Limited to ~20 microns, and low Etchability (binders)	Excellent: Only limited by equipment, easily etchable	
Stability, Shelf Life	Limited: typically settles, and needs freezer	Excellent: >6 months of shelf life	
Layer Build-up	Excellent: 3 – 20 um in "one pass"	Limited: 50nm – 2um in "one pass", but can build up with heated platen (no intermediate cure)	

El's Brand: Particle-Free Metal Inks

1. Particle-free

- Molecular metal solution (Ag, Pd, Pt, Au, Ni, and alloys)
- Does not rely on nanoparticle "sintering" mechanism
- Highly conductive (30 90% bulk silver) films in ambient environment at relatively low cure profile (thermal, NIR, UV)

2. No traditional binders/surfactants

- Superior environmental stability and reliability
- No impurities in final film approaching 99.99% metal
- More predictable long-term behavior and REL testing

3. Low Cost and Cost of Ownership

- Patented formulations without metal particle as starting material
- Customers use far less material for same or better performance
- Fine-line features and high conductivity enable streamlined manufacturing

El's Digital Printing Products

- Digital Printing is an overwhelming majority of current and future products
 - Ag, and beyond including Au, Pt, Pd, Ni
- Engineered with tunable viscosity and curing methods (thermal, photonic)

El Product	BKR	Material	Market	Print Application	Print Viscosity (cps)	Processability
900 Series	904		All screen print applications	Screen print	>30,000	Thermal, NIR, UV
	909		All screen print applications	Screen print	>40,000	Thermal, NIR, UV
	918		Via-fill	Dispensing	1,000 – 2,000	Thermal, NIR, UV
	906		Biomedical/wearable	Screen print – silver/silver chloride	>30,000	Thermal, NIR, UV
1200 Series	1207		EMI	Spray – adhesion promotion	10 – 30	Thermal, NIR, UV
	1208		EMI	Spray	10 – 30	Thermal, NIR, UV
1100 Series	1104, 1121	Silver	Jetting – glass/Pl	IJP or spray – high temp	10 – 40	Thermal, NIR, UV
	1112		Jetting – glass/Pl	EHD – Drop on demand	10 – 40	Thermal, NIR, UV
	1125		Jetting – glass/Pl	EHD – Electrospin	>10,000	Thermal, NIR, UV
700 Series	710		Jetting – PET	IJP – Iow temp	6 – 12	Thermal, NIR, UV
	711		Jetting – PET	IJP – Adhesion promotion	6 – 12	Thermal, NIR, UV
EI 600 Series	604		Pre-cursor to downstream EI products	AJP, wire-draw, flexographic	200 – 1000	Thermal, NIR, UV
EI 1600 Series	1604	Gold	Medical Device/High Temp/Hypersonics	AJP, IJP	10 – 30	Thermal, NIR, UV
EI 1500 Series	1505	Platinum	Gas Sensors	AJP, IJP	10 – 30	Thermal, NIR, UV

Performance Validated by Customers

- 60 70% bulk Ag "as printed"
- 70 80% bulk Ag with additional curing
- Electrical properties are similar to plated Cu
- Fundamentally different regime compared to NP inks (~5 – 25% bulk Ag)

CIRCUITWRAP

Display – LCD, MiniLED and MicroLED

TSP/DA Electrode

Edge-Electrode

Via

Repair

7

CIRCUITSHIELD

EMI Shielding Work

Package/Chip/Board Conformal

Laminate

Cable

Fabric

Process - Metallization of SiP

- Film Thickness and Coverage on EMC chips
 - 3 um for top
 - 2.8um for side

Electroninks CONFIDENTIAL

Performance - Shielding Effectiveness of EI Particle Free Ink (IEEE-299)

9

110

Circuitry for interior LED lighting

IME (in-mold electronics)

Electronics for pressure

sensing, electrodes

E-textiles for embedding electronics into fabric, leather

CIRCUITEX™

E-Textiles

 $\mathsf{Fiber} \rightarrow \mathsf{Yarn} \rightarrow \mathsf{Fabric}$

Mobility, Healthcare Antiviral

· Our films are pure metal

- Catalytically active electroless plating is feasible (1-10 microns of copper or nickel)
- Highly conductive can be directly electroplated (>10 microns of any metal)

CIRCUITSEED

Directed Seed and Plate

Advanced Packaging 3D TSV and TGV Gold, Platinum, Nickel Metal Complex Inks **Electroninks Confidential**

Ramp Annealed to 300 °C, 3 Passes

SEM Cross Section

Beyond Ag: Au, Pt, Nickel inks

Ink ID	Anneal	Avg. Thickness (um)	Bulk Au Conductivity (%)
EI-1605 (Au)	250C	0.362	30 – 40
EI-1605 (Au)	250C	0.575	45 – 55

CIRCUITJET™

All-in-One Closed Ecosystem Rapid PCB Printer

FR4 or PI boards EI Proprietary Substrates EI Proprietary Cartridges and Inks

Autodesk Eagle Software via Autodesk<>El Residency

- CircuitJet uses inkjet technology to additive manufacture PCBs at the users desktop. Can literally just print from their desktop and test same-day
- Also partnering with Royal Circuits to roll out CircuitJet as a service
- Logistics Costs are drastically decreased as the boards are created on demand for the user
- Print dialog and menus integrated into Autodesk Eagle allows the user to access traditional professional PCB design tools

 Materials are non-toxic and cartridges can be recycled via traditional desktop cartridge recycling centers

