NanIntegris

Notes on NanoIntegris Purity

The following describes our method for quantifying the relative metallic and semiconducting enrichment of our nanotube products. In short, we determine the metallic/semiconducting transition-energy peaks of the CNT species in our material using simple tight-binding calculations. We then measure these peaks via optical absorbance, and scale them by empirically determined extinction coefficients. Read on for more information.

Starting Material and Predictions

NanoIntegris Process:

• We start with electric-arc discharge SWNTs having a fairly narrow diameter distribution.

Manufacturer Claims:

• Manufacturer claims: tight diameter distribution between 1.2-1.7 nm (with majority between 1.25-1.55 nm), peaked at 1.4 nm

Simple Tight Binding Predictions

Largely from Acc. Chem. Res. 35, 1018 (2002)

Rough values for transition energies can be calculated from simple tight binding calculations.

Formulas for E_{ii} energies:

Metallic

- E_{M11}=6γ_oa_{cc}/d
- E_{M22}=12γ_oa_{cc}/d
- E_{M33}=18γ_oa_{cc}/d

Semiconducting

- $E_{S11}=2\gamma_0a_{cc}/d$
- $E_{S22}=4\gamma_0 a_{cc}/d$
- E_{S33}=8γ_oa_{cc}/d

Simple Tight Binding Predictions

Using $a_{cc} \sim 0.143$ nm, $\gamma_0 \sim 2.9$ eV and d ~ 1.2 -1.7 nm, we can obtain rough estimates for E_{μ} ranges:

- E_{s22} transitions should lie between ~900-1270 nm
- E_{M11} transitions should lie between ~600-850 nm
- E_{s33} transitions should lie between ~450-630 nm
- E_{M22} transitions should lie between ~300-420 nm
- Minimal ovelap between E_{S22} and E_{M11}
- UV-Vis-NIR absorbance can be used to confirm predictions

Nan Integris

Notes on NanoIntegris Purity

UV-Vis-NIR: PureTubes Clear peaks detected for both metallic and semiconducting nanotubes: M11, S22, S33

NanIntegris

Notes on NanoIntegris Purity

Absorbance of Unseparated SWCNT

- Broad peak at 900-1270 nm >S22
- Broad peak at 600-850 nm > M11
- Several small peaks from 400-600 nm > \$33
 - ->We see peaks where we would expect them
 - ->We estimate our purities based on ratios of the M11 and S22 peak areas after linear background subtraction

->The individual peak areas are scaled by empirically-determined values for the M11 and S22 extinction coefficients to determine metal-semiconductor purities

Experimental Confirmation of Metal vs. SC Character

FromArnold*etal*, *Nature Nano* 1,60 (2006)

- Enriched samples (ratio of M11 to S22) used to make thin film transistors
- Tubes with absorbance from 900 to 1200 nm behaved like semiconductors (conductivity varied dramatically with gate bias)
- Tubes with absorbance from 600-800 nm behaved like metals (~constant conductivity vs. gate bias)

Additional Confirmation of Metal vs. SC Character

From Avouris & Hersam, ACS Nano 2, 2445 (2008)

- 83 single nanotube transistors fabricated from ~99% SC material -> 82 displayed semiconducting behavior
- TFTs made from ~99% pure material displayed a combination of high on/off ratios and high on-currents
- High On/Off Ratio : ~10³
- High On-Current : I_{ON} > 1mA at V_{sd} ~ 2V