top of page

Alkim Akyurtlu

Professor/Co-Director

PERC

USA

* All members of the platform can watch the entire presentation.

 

Please register to become a member.

Additive Manufacturing for Advanced Microwave and RF Applications

The Future of Electronics RESHAPED 2024 Berlin

23 October 2024

Berlin, Germany

Estrel

Additive approaches have been motivated by the need for rapid prototyping and systems that are flexible, lightweight, conformable, and wearable. There is growing need to adopt Additive Manufacturing (AM) technologies for Radio Frequency (RF)/Microwave (MW) electronics motivated by the need for rapid prototyping and the production of RF systems that are flexible, lightweight, conformable, and wearable. Printing RF electronics for DoD applications (e.g., radars, communication systems) is challenging since the requisite materials, components and systems demand higher performance than required for low frequency applications. Materials play a critical role in the application of AM to RF and MW applications. Development and characterization of low-loss dielectrics, ferroelectric inks, and convertible inks are essential in printing devices that will provide desired performance metrics. The formulation of new materials, including UV curable dielectric, resistive, and ferroelectric inks, and characterization of their properties at microwave frequencies, are key challenges in applying additive manufacturing to printed RF and microwave devices.Details of these challenges and ways of mitigating them through specific applications, which exemplify all stages of development, will be presented. Details of the key enablers for these applications and devices will also be described. Recently, there has also been interest in applying Additive Manufacturing (AM) in packaging of microelectronic devices. Additive packaging offers advantages of expanded functionality in restricted volume, through miniature, low-SWaP-C sensors, allowing for non-traditional form factors. In this presentation examples of additive packaging including, design, fabrication, and characterization of a non-planar multi-material MMIC structure as well as bare-die integration is presented to demonstrate significant footprint reduction and circuit compaction. The results of this work show that fully additive approach is feasible for non-planar circuits, which will allow for footprint reduction, weight reduction, and achievement of novel form factors that are critical for microwave applications.Finally, describe several printed devices and subsystems, including tunable Frequency Selective Surface (FSS) based filters, wearable metasurface filters, and printed connectors will be provided. Our work includes multi-physics-based design and modeling as well as the development of printing/processing technologies using various direct-write printers for these applications.

Watch the 5-minute excerpt from the talk
More presentations from
PERC

AR, VR, and MR Vision Systems: Innovations, Promising Start-Ups, Future Roadmap

25 July 2023

New methods for generation of multifocal images for AR Head-Up Display applications

Ilya Titkov

TechBlick Platform

Online

The TechBlick Platform: Why Join?

Onsite Admission

With your Hybrid Individual or Group Pass, you can attend one or more of our world-class conferences and exhibitions around the world, including Electronics RESHAPED USA or Europe, MicroLED Connect, AR/VR Connect, Perovskite Connect, Sustainable Electronics RESHAPED, and more…

CONTACT US

KGH Concepts GmbH

Mergenthalerallee 73-75, 65760, Eschborn

+49 17661704139

venessa@techblick.com

TechBlick is owned and operated by KGH Concepts GmbH

Registration number HRB 121362

VAT number: DE 337022439

  • LinkedIn
  • YouTube

Sign up for our newsletter to receive updates on our latest speakers and events AND to receive analyst-written summaries of the key talks and happenings in our events.

Thanks for submitting!

© 2026 by KGH Concepts GmbH

bottom of page