top of page

Ethan Self

R&D Associate- Materials Electrochemist

Oak Ridge National Laboratory

United States

* All members of the platform can watch the entire presentation.

 

Please register to become a member.

Solution-Based Synthesis of Disordered Rocksalt (DRX) Li-ion Cathodes

Battery Materials: Next-Generation & Beyond Li-Ion Battery Technology 2025

Solid-State Batteries: Innovations, Promising Start-Ups, & Future Roadmap 2025

11 February 2025

Online

TechBlick Platform

Li-ion batteries containing conventional cathodes are unable to meet projected energy demands due to overreliance on critical resources—namely Co and Ni. Disordered rocksalt (DRX) materials represent a promising class of next-generation cathodes due to their high specific energy (>700 Wh/kg) and compatibility with earth-abundant transition metals (e.g., Mn and Ti). Despite these promising attributes, a major limitation of DRX cathodes is the lack of scalable synthesis platforms which enable fine tuning of the material’s structure and Performance. To address this issue, the present study reports the synthesis and characterization of Mn-based DRX oxyfluorides prepared through a scalable two-step route involving: (i) a solution-based combustion reaction to prepare a transition metal oxide precursor, followed by (ii) a high temperature reaction with lithiation/fluorination agents. Overall, the approach yields high purity DRX powders which can be prepared at lower temperatures and over shorter timeframes (e.g., 800 °C and 1 h) compared to conventional solid-state processes. Interestingly, these findings demonstrate that adding LiF to the oxide precursor is critical to facilitate DRX phase formation during the second heating step. These Mn-based DRX cathodes exhibit stable cycling performance with reversible capacities up to ~215 mAh/g in Li metal half cells. This presentation will discuss recent findings for DRX cathodes produced through this two-step reaction route. More specifically, effects of precursor selection and annealing profile on the reaction pathway and electrochemical performance will be highlighted. Overall, these results illustrate the merits and opportunities for scalable combustion reactions to produce Co/Ni-free DRX cathodes.

Watch the 5-minute excerpt from the talk
More presentations from
Oak Ridge National Laboratory

The TechBlick Platform: Why Join?

Onsite Admission

With your Hybrid Individual or Group Pass, you can attend one or more of our world-class conferences and exhibitions around the world, including Electronics RESHAPED USA or Europe, MicroLED Connect, AR/VR Connect, Perovskite Connect, Sustainable Electronics RESHAPED, and more…

CONTACT US

KGH Concepts GmbH

Mergenthalerallee 73-75, 65760, Eschborn

+49 17661704139

venessa@techblick.com

TechBlick is owned and operated by KGH Concepts GmbH

Registration number HRB 121362

VAT number: DE 337022439

  • LinkedIn
  • YouTube

Sign up for our newsletter to receive updates on our latest speakers and events AND to receive analyst-written summaries of the key talks and happenings in our events.

Thanks for submitting!

© 2026 by KGH Concepts GmbH

bottom of page