Cellulose Batteries
Battery Materials: Next-Generation & Beyond Li-Ion Battery Technology 2025
11 February 2025
Online
TechBlick Platform
I will discuss a general design strategy for achieving one-dimensional (1D), high- performance polymer solid-state ion conductors through molecular channel engineering, which we demonstrate via Cu 2+ -coordination of cellulose nanofibrils. The cellulose nanofibrils by themselves are not ionic conductive; however, by opening the molecular channels between the cellulose chains through Cu 2+ coordination we are able to achieve a Li-ion conductivity. This improved conductivity is enabled by a unique Li + hopping mechanism that is decoupled from the polymer segmental motion. Also benefitted from such decoupling, the cellulose-based ion conductor demonstrates multiple advantages, including a high transference number (0.78 vs.0.2–0.5 in other polymers 2 ), low activation energy (0.19 eV), and a wide electrochemical stability window (4.5 V) that accommodate both Li metal anode and high-voltage cathodes. Furthermore, we demonstrate this 1D ion conductor not only as a thin, high-conductivity solid-state electrolyte but also as an effective ion-conducting additive for the solid cathode, providing continuous ion transport pathways with a low percolation threshold (Nature, Oct 22).






