Next Generation Assembly and Interconnect Technologies for Smart Structures and Functional Surfaces
The Future of Electronics RESHAPED 2022
11 October 2022
Eindhoven, Netherlands
High Tech Campus, Conference Centre
Emerging electronic structures in consumer, automotive, medical and several other end-applications are rapidly moving towards integrated, interactive, smart interfaces from their current physical and mechanical forms (such as switches, connectors, housings, etc.). Electronics assembly, manufacturing and processing are also evolving to be compatible with the next generation of sleek, lightweight, compact form factors. Additionally, current megatrends such as sustainable and green electronics, and increasingly additive manufacturing approaches and fully automated assemblies will start to become mainstream.
To enable and deploy these next generation smart structures and functional surfaces, a combination of smart materials and compatible processes are needed. In this paper, we present a holistic view from materials, high-volume manufacturing (HVM) approaches and sustainable processes. We discuss/review key building blocks of 3D smart structural platforms that represent an integrated approach, which covers:
- Novel film substrates (for example, multifunctional PC Substrates for In-Mold Electronics),
- Highly conductive and formable Silver Inks
- High performance formable Dielectrics (Thermally curable),
- Formable Structural and Electrically Conducting Adhesives (ECAs), and
- Formable Encapsulants.
We present performance and compatibility of an integrated multi-layer stacks that can be thermoformed and then injection molded to produce smart, interactive 3D structures. Details of several technology demonstrators showcasing these leading-edge technologies will be presented. A key requirement for many of these integrated 3D structures is that they will need to meet or exceed stringent reliability requirements for automotive, medical, military and other demanding applications. Finally, a summary of key reliability testing results will be presented for the 3D IME structures.






