Innovations Festival: Printed, Hybrid, 3D, InMold, Textile Electronics

JUNE 2022

5 Minute preview of all the event presentations

Topics Covered

This must-attend one-day Innovations Festival showcases exciting and cutting-edge advances from across the world. It brings together more than 400+ participants, 45 speakers and 55+ live exhibitors. The audience is truly global, coming together across many different time zones.

This is a truly unique gathering in our special 'in-person virtual' platform, which makes virtual interaction real and enables spontaneous discussions, serendipitous meetings, and excellent networking. We promise- in many ways it is more effective and more fun than onsite in-person interactions.

R2R Nanolithography | Nano-Scale Wafer Printing | Smart Skin Patches | 3D Touch Surfaces | Quantum Dots | Stretchable Liquid Metal Inks | Jet Metallization | Laser Induced Forward Transfer | Fuel Cells | Printed Batteries | Organic Photovoltaics | R2R PCB Production | Hybrid Circuits | 3D Electronics | InMold Electronics | Smart Surfaces | Ultra Fine Line Printing | Novel Interconnect Technology | E-Textiles | Printed Displays | Printed Sensors | Printed Sensors | Innovative Paste Technologies | Smart Packaging | Additively Manufactured Electronics | OTFTs | Perovskites

These videos are a first 5 minutes preview. TechBlick members can watch all these presentations in full. Register to get access.

* Members only

Mike Mastropietro

ACI Materials

Mike Mastropietro

CTO, Director of R&D

ACI Materials

Stretchable Electronic Materials that Meet the Demands

ACI Material’s Stretchable Electronics (SE) product portfolio offers a complete solution for durable wearable electronics. The products are printed on thermoplastic polyurethane (TPU) films which can be bonded to fabrics. This results in devices that stretch without cracking and maintain excellent electrical properties satisfying the harsh demands of wearable electronics. Early to market stretchable conductors have a narrow scope of application due to limited stretchability without cracking. ACI’s product have a superior combination of electrical performance, resistance to fatigue during cyclic elongation, and excellent recovery. Examples of use in biometric sensors and fixed resistance heaters will be shown.

Jeff Duce

Boeing

Jeff Duce

Boeing

Why Boeing is interested in printed electronics and what value it has to Boeing.

Jean-Rémi Pouliot

Brilliant Matters

Jean-Rémi Pouliot

CEO

Brilliant Matters

Recent advancements in organic photovoltaics

Organic photovoltaic (OPV) technologies have been steadily moving towards market-ready applications in the past decade due to rapid evolutions in materials discovery, device stack engineering and processing strategies. For instance, OPV technologies being tunable, flexible, and semi-transparent, are ideal candidates for photovoltaic modules for indoor energy harvesting and integration into buildings (BIPV). Materials innovation is at the forefront of the quest towards reaching better power conversion efficiency (PCE). While this innovation is mostly focused on reaching a higher efficiency level, the industry has challenges of its own in its materials selection. At Brilliant Matters, we believe that addressing industrial figures of merits, such as printability and synthetic sustainability, is key to enabling the lab-to fab transition.

Thomas Kolbusch

Coatema

Thomas Kolbusch

Director

Coatema

The pathway to digital fabrication of printed electronic products

Morten Lindberget

CondAlign

Morten Lindberget

VP Sales & Marketing

CondAlign

Adhesive ACF for efficient room temperature bonding in FHE

The CondAlign anisotropic conductive film is an adhesive (ACF) that bonds electronic components at room temperature and low pressure. With mechanical properties like softness, flexibility and good adhesiveness, achieved by efficient use of the conductive particles, this product addresses a key challenge in the FHE area; how to attach components to flexible substrates at room temperature.

Tommy Höglund

DP Patterning

Tommy Höglund

Sales & Marketing Manager

DP Patterning

R2R FPCB production technology.

Zachary J. Davis

Danish Technological Institute

Zachary J. Davis

Team Manager, PhD

Danish Technological Institute

Your copper nanoparticle production scale up

Finding sustainable alternative conductive materials to silver is growing in demand. Copper is the next best conductive material, extremely abundant and much cheaper compared to silver and thus is a prime candidate moving forward. DTI has developed several micro and nano copper particles and has demonstrated industrial production of up to 10 kg per day. This talk will showcase the reactor technology DTI has developed, consisting of both a material synthesis reactor as well as filtration system, for automated production of micro/nanomaterials, for printed electronic application, as well as preliminary results for copper based inks produced using produced particles.

Aart-Jan Hoeven

DoMicro

Aart-Jan Hoeven

Business Development Manager

DoMicro

Perspectives For Electrohydrodynamic Printing On Nanoscale

DoMicro has developed a printer (the DM50-ENP) with a novel technology for printing wires with nanoscale dimensions. The technology is based on the electrohydrodynamic effect. This effect enables a submicron additive technology, in which an electric field is used for pulling an inkjet into a very narrow shape. The effect can reduce the line width from about 30 microns, as can be obtained with industrial inkjet technology, down to 1 micron or less.
Applications are in various fields, such as displays, micro fluidics, batteries and photo voltaics. The presentation highlights the opportunities in these application areas, as well as results from trials with the DoMicro printer.

Brian Laughlin

DuPont MicroCircuits

Brian Laughlin

Lead Scientist

DuPont MicroCircuits

Demonstration of high frequency 5G modules using LTCC

DuPont™ GreenTape™ 9KC Low-Temperature Co-fire Ceramic (LTCC) tape and silver (Ag) metallization was used to fabricate an antenna-in-package (AiP) radio frequency front end (RFFE) module operating at 28 GHz. DuPont collaborated with ITRI in Taiwan to design, fabricate, and test this AiP RFFE module which utilizes a Anokiwave phasor chipset and a 2x4 patch antenna array that gives >18 dBm Effective Isotropic Radiated Power (EIRP) while steering the radiated beam over ±35° with <1 ppm error vector magnitude (EVM) under 64 QAM modulation. This reference design is analogous to many use cases for 5G telecommunication deployment such as small cells and mmWave base stations where LTCC is a excellent material platform due to high reliability, superior thermal performance, and stable material performance at high frequency over all practical ambient conditions.

Valentijn von Morgen

DuPont Teijin Films UK Ltd

Valentijn von Morgen

Business Development Manager

DuPont Teijin Films UK Ltd

Polyester film solutions from DTF meeting changing needs in flexible electronic markets.

Continued advances in the Flexible and Formable Electronics is driving the material suppliers such as DuPont Teijin Films to provide functionality to meet wide ranging demands for applications such as displays, TFT backplanes, energy harvesting and storage, sensors and Human Machine Interfaces.

This talk will give a brief overview of DTF’s PET and PEN product range meeting wide ranging application needs.

Thereby the focus will be on the recent progress made with the development of PEN substrates for extreme processing requirements, formable PETfilms for in-mold electronics, films with ultra clean and smooth surfaces for ultra barrier and high resolution structures and combining UV absorption, weather resistance or fire retardancy whilst also offering more sustainable solutions with the incorporation of recycled materials in the substrates.

DTF has launched many films through collaborations with partners in the flexible electronic industry as our organisation is proving to be uniquely capable of offering customised and affordable polyester substrate solutions.

Armin Wedel

Fraunhofer IAP

Armin Wedel

Division Director Functional Polymers

Fraunhofer IAP

Ultra precise EHD-Jet printing of quantum dots.

Jonas Mertin

Fraunhofer ILT

Jonas Mertin

Fraunhofer ILT

Laser processing of printed electronic layers

Printed electronics are increasingly relevant to the large-scale industrialization and commer- cialization of integrated sensors and functionalities. To equip high-value components with printed sensors medium lot sizes, direct printing of functionalities onto a semi-finished or finished component is the most automatable approach to manufacturing. However, the thermal post-treatment of printed layers is often not possible or can only be achieved with compromises using conventional oven processes, either for reasons of energy and thus cost efficiency, com- ponent size, loss of mechanical properties or insufficient thermal load capacity of the compo- nents used.

The use of laser radiation for thermal post-treatment of printed functionalities offers ad- vantages in these application scenarios. Due to the local heat input, sensors printed directly on components can be selectively and quickly post treated. On the one hand, this saves energy in production and thus costs. On the other hand, it enables the automation of the entire sensor production directly on a component or a semi-finished product on a machine tool or production

Further advantages are the significantly shorter processing times of laser processing com- pared to oven processes as well as the complete 3D compatibility of the process.

We will present the possibilities and advantages of combined printing and laser processes for manufacturing embedded sensors. We will show how these technologies can be combined with other manufacturing processes to open up new possibilities for the production of component-connected functionalities.

Malte von Krshiwoblozki

Fraunhofer IZM

Malte von Krshiwoblozki

Group Manager

Fraunhofer IZM

E-Textiles: Adhesive Bonding for electronics integration in textiles

Fraunhofer IZM is an electronic packaging institute providing solutions for new electronics manufacturing. Fraunhofer IZM is focusing on miniaturization, new materials and new form factors for electronics.
Adhesive bonding for electronic textiles was developed and evolved at IZM during several projects. This pitch will introduce the technology that allows the assembly of electronic modules on textiles through creating an electrical and mechanical connection within the same process. Adhesive bonding allows the integration of any kind of PCB, flex PCB or stretchable electronics based module e.g sensor module, light module etc. into a textile circuit. Therefore, Fraunhofer IZM developed a prototype bonding machine with a working area of 1 by 1 m that is able to handle any kind of textile substrate. A hug variety of textile integrated conductors are supported by adhesive bonding, even insulated conductors if the insulation is thermoplastic.

David Dewey

Fujikura Kasei

David Dewey

Sales

Fujikura Kasei

Creating Fully Stretchable Medical Devices with Silicone-based AgCl Inks

As stretchable inks improve, the possibility of a fully stretchable medical device is realized with silicone-based stretchable inks utilizing AgCl filler for medical electrodes

Thibaut Soulestin

Henkel

Thibaut Soulestin

Application Engineer EIMEA

Henkel

Pad-printing Silver Inks – Example of 5G Antenna Applications

Henkel is an industry-leading supplier of printed electronics materials and services. The broad Loctite portfolio of functional inks includes silver inks, carbon inks, silver/ silver chloride inks, dielectric inks, and other non-conductive inks as well. Due to Henkel’s extensive partnership network, we are uniquely situated to provide high-quality materials for a variety of printed electronics applications. Combining the trend of 3D electronics and increased connectivity, we recently developed a range of silver inks for pad-printing. This ink range enables the direct 3D-printing of 5G antenna on the smartphone frame.

David Keicher

IDS

David Keicher

VP

IDS

High Output Rate Aerosol Printing for High Conductivity Printed Electronics

Sabine Heusing

INM-Leibniz Institut

Sabine Heusing

INM-Leibniz Institut

Flexible transparent conductive coatings by electrospinning

Transparent conductive coatings are widely used as transparent conductive electrodes in displays, touch screens, solar cells, antenna structures etc., and require a low sheet resistance combined with a high transmission. For wearable electronics and bendable displays, a flexibility of the electrode material is also required. Electrospinning was used as a facile method to produce very long and thin fibers, and in combination with silver, conductivity was introduced.
The properties of silver (Ag) nanoparticle-containing inks and coatings thereof, applied by electrospinning on PET and PC foil substrates were studied. The tested Ag nanoparticle-containing inks consisted of a commercial nanoparticulate silver ink and a polymeric binder in a suitable solvent. The electrospun fibers were fabricated using different spinning conditions and were then silver plated in an electroless process. The resulting coatings have been characterized with respect to their sheet resistance, transmission, and haze.
It was observed that with the electrospun polymer silver fibers, fibers with a diameter of about 1 to 3 µm and lengths of several cm could be obtained, ensuring a high percolation. By variation of the number and the diameter of the fibers, the conductivity and the optical properties could be improved, and coatings with a sheet resistance below 5 Ω/sq were obtained, showing a high transmission of up to 92 % and a low haze below 2 %.
The achieved sheet resistances in combination with the relatively high transmission are comparable to those of other transparent conductive coatings that are state of the art and available on the market, such as ITO coatings. In addition, the coatings produced by this electrospinning process are flexible and stretchable, which offers interesting new applications for wearable electronics and 3D-formable displays, for example. Other advantages of these coatings are the low-cost process for their production and the possibility of upscaling by a roll-to-roll process.