Graphene & 2D Materials: End Users, Applications, Major Producers & Start Ups
14-15 April 2021
Virtual Event
Graphene | Carbon Nanotubes (SWCNT, MWCNTs) | Boron Nitride | 2D Materials | Graphene-Silicon Anode | Battery Additives | Supercapacitors | Biosensors | Concrete Additive | Filtration Membranes | Composites and Plastic Additives | Fibers and Textiles | Gas Sensors | Memory Devices | Shielding | Conductive Fibers | Scale-Up | Quantum Electronics | Reflective Displays | Speaker Membranes | Anti-Corrosion Coatings | Novel Manufacturing Methods | Functionalization | R2R CVD Growth and Transfer | VC Investment
CET
Full Agenda
The times below is Central European Times (CET).
On the platform the times will automatically be changed to your time zone
Sooyeun Kim
Professional/Chief Research Engineer
S.Y. Kim, W.B. Park, J.S. Moon, J.W. Sung, T.H. Kim, J.H. Roh, D.J. Park
Materials & Devices Advanced Research Center, LG Electronics Inc. Seoul, Korea
It was believed that graphene is a wonder material, capable of changing the world like plastics.
However, we have not experienced a graphene industrial revolution yet. Slow advances in its R&D make graphene’s commercial future much less certain. The main reason behind this is cost. Despite superior properties of graphene, the cost to benefit ratio of applying graphene to commercial products is not clear. Also, the obstacle to be overcome is reliable and consistent production of high quality graphene. Here, LG Electronics has made a challenge for mass production of high quality graphene.
In this talk, it is addressed that vertical R2R CVD reactors have been developed for large area and mass production. How the graphene quality has been improved and how we control the quality for mass production is presented. Our business strategy for future graphene applications is shortly mentioned.
CVD Graphene as a New Material Platform for a Next Generation IT/ BT Industry,
01:10pm
S.Y. Kim, W.B. Park, J.S. Moon, J.W. Sung, T.H. Kim, J.H. Roh, D.J. Park
Materials & Devices Advanced Research Center, LG Electronics Inc. Seoul, Korea
It was believed that graphene is a wonder material, capable of changing the world like plastics.
However, we have not experienced a graphene industrial revolution yet. Slow advances in its R&D make graphene’s commercial future much less certain. The main reason behind this is cost. Despite superior properties of graphene, the cost to benefit ratio of applying graphene to commercial products is not clear. Also, the obstacle to be overcome is reliable and consistent production of high quality graphene. Here, LG Electronics has made a challenge for mass production of high quality graphene.
In this talk, it is addressed that vertical R2R CVD reactors have been developed for large area and mass production. How the graphene quality has been improved and how we control the quality for mass production is presented. Our business strategy for future graphene applications is shortly mentioned.
Nikolaus Nestle
Principal Scientist
Since the discovery of graphene and its impressive mechanic, thermal and electrical properties, major materials research efforts have been made towards harnessing these properties for the development of polymer composites with unprecedented performance. While this research has shown that some of the bolder expectations for their properties will probably not be achievable for reasons from basic physics, substantial progress has been made in the production of composites with more down-to-earth property improvements.
At the same time, the production of graphene related materials (GRM) has made great progress with respect to available quantities, cost and resource efficiency that pragmatic applications of graphene as just another functional filler for polymer composites has become economically and ecologically viable.
While such properties are not necessarily “flashy”, they nevertheless may greatly help the polymer industry on the way of to a more circular and resource-efficient economy.
Black Flakes with Green Value Proposition – Graphene Polymer Composites for Sustainability
01:30pm
Since the discovery of graphene and its impressive mechanic, thermal and electrical properties, major materials research efforts have been made towards harnessing these properties for the development of polymer composites with unprecedented performance. While this research has shown that some of the bolder expectations for their properties will probably not be achievable for reasons from basic physics, substantial progress has been made in the production of composites with more down-to-earth property improvements.
At the same time, the production of graphene related materials (GRM) has made great progress with respect to available quantities, cost and resource efficiency that pragmatic applications of graphene as just another functional filler for polymer composites has become economically and ecologically viable.
While such properties are not necessarily “flashy”, they nevertheless may greatly help the polymer industry on the way of to a more circular and resource-efficient economy.
Roll-To-Roll Fabrication Of Supercapacitors: Towards A New Generation Of Devices And Fabrication Technique
01:55pm
Aravind Vijayaraghavan
Professor of Nanomaterials & Head of Business Engagement
In this talk, we will first present the science behind how graphene can enhance the mechanical properties of elastomers like rubbers, and also foams. We will then talk about how inov-8 have pioneered the use of graphene-enhanced rubber in their Graphene-Grip outsoles, and graphene-enhanced foams in their G-Fly midsoles. These deliver uncompromising and world-leading performance in inov-8s’ running, hiking and fitness footwear, which are now sold both online and in high-street stores all over the world. These shoes have won numerous Editor’s Choice awards and powered athletes to competition successes and world records.
Graphene-enhanced rubber & foam for ‘no compromise’ running shoes
02:50pm
In this talk, we will first present the science behind how graphene can enhance the mechanical properties of elastomers like rubbers, and also foams. We will then talk about how inov-8 have pioneered the use of graphene-enhanced rubber in their Graphene-Grip outsoles, and graphene-enhanced foams in their G-Fly midsoles. These deliver uncompromising and world-leading performance in inov-8s’ running, hiking and fitness footwear, which are now sold both online and in high-street stores all over the world. These shoes have won numerous Editor’s Choice awards and powered athletes to competition successes and world records.
Bodil Oudshoorn
Footwear Product Manager
In this talk, we will first present the science behind how graphene can enhance the mechanical properties of elastomers like rubbers, and also foams. We will then talk about how inov-8 have pioneered the use of graphene-enhanced rubber in their Graphene-Grip outsoles, and graphene-enhanced foams in their G-Fly midsoles. These deliver uncompromising and world-leading performance in inov-8s’ running, hiking and fitness footwear, which are now sold both online and in high-street stores all over the world. These shoes have won numerous Editor’s Choice awards and powered athletes to competition successes and world records.
Bodil Oudshoorn
Inov-8
Bio
Dr Bodil Oudshoorn is the Footwear Product Manager at the British sports brand inov-8. After a PhD in Sports Engineering at Sheffield Hallam University she has now moved to industry, combining her knowledge of engineering, biomechanics and sport to produce innovative footwear for athletes.
Graphene-enhanced rubber & foam for ‘no compromise’ running shoes
02:50pm
In this talk, we will first present the science behind how graphene can enhance the mechanical properties of elastomers like rubbers, and also foams. We will then talk about how inov-8 have pioneered the use of graphene-enhanced rubber in their Graphene-Grip outsoles, and graphene-enhanced foams in their G-Fly midsoles. These deliver uncompromising and world-leading performance in inov-8s’ running, hiking and fitness footwear, which are now sold both online and in high-street stores all over the world. These shoes have won numerous Editor’s Choice awards and powered athletes to competition successes and world records.
Bodil Oudshoorn
Inov-8
Bio
Dr Bodil Oudshoorn is the Footwear Product Manager at the British sports brand inov-8. After a PhD in Sports Engineering at Sheffield Hallam University she has now moved to industry, combining her knowledge of engineering, biomechanics and sport to produce innovative footwear for athletes.
Dr. Christoph Stangl
Project Manager
For lithium ion batteries, the use of silicon as active material on the negative electrode is most promising, since silicon offers exceptional high volumetric and gravimetric lithium storage capabilities as well as low charging/discharging potentials. However, this high storage capability is accompanied with high volume changes during lithium insertion/extraction, which causes a rapid decay in dimensional stability of the host material (1). The use of graphene-related materials can help to overcome these crucial problems, as graphene offers a highly conductive and mechanically stable matrix that can suppress or buffer this large volume expansion (2) (3). Consequently, graphene-related materials improve the cycling stability by retaining the native structural integrity as well as the electrode porosity.
Silicon/Graphene Composites For High-Energy Batteries
03:13pm
For lithium ion batteries, the use of silicon as active material on the negative electrode is most promising, since silicon offers exceptional high volumetric and gravimetric lithium storage capabilities as well as low charging/discharging potentials. However, this high storage capability is accompanied with high volume changes during lithium insertion/extraction, which causes a rapid decay in dimensional stability of the host material (1). The use of graphene-related materials can help to overcome these crucial problems, as graphene offers a highly conductive and mechanically stable matrix that can suppress or buffer this large volume expansion (2) (3). Consequently, graphene-related materials improve the cycling stability by retaining the native structural integrity as well as the electrode porosity.
Bernhard Muenzing
Sales Director
An introduction how graphene can enhance heat dissipation in electronic devices as well as for coatings and plastic materials is given. A short overview on the processing steps to get highly flexible heat dissipation film with graphene oxide as starting precursor is discussed. Finally the latest R&D results for corrosion protection is presented.
Heat Dissipation and More with Graphene – New Results
03:50pm
An introduction how graphene can enhance heat dissipation in electronic devices as well as for coatings and plastic materials is given. A short overview on the processing steps to get highly flexible heat dissipation film with graphene oxide as starting precursor is discussed. Finally the latest R&D results for corrosion protection is presented.
Angelos Kyrlidis
R&D Director
Cabot is a leading supplier of conductive carbon additives and has recently expanded its portfolio to include carbon nanostructures (CNS), a unique network of crosslinked carbon nanotubes. CNS can deliver conductivity at very low loadings in composite systems. This enables the development of innovative solutions in many applications ranging from EMI shielding plastics and silicones to conductive high end elastomers, as well as next generation formulations for batteries.
Enabling Innovative Applications With High Performance Conductive Carbon Additives
04:10pm
Cabot is a leading supplier of conductive carbon additives and has recently expanded its portfolio to include carbon nanostructures (CNS), a unique network of crosslinked carbon nanotubes. CNS can deliver conductivity at very low loadings in composite systems. This enables the development of innovative solutions in many applications ranging from EMI shielding plastics and silicones to conductive high end elastomers, as well as next generation formulations for batteries.
Julio Gomez
CEO
The application bulk graphene materials in composites is predicted to be the largest market for graphene. Several products based on composites, mainly in sport good sector, claims that are based on graphene materials (GRMs).
GRMs are a family of materials with remarkable differences in morphology, aspect ratio, surface chemistry. An adequate selection of the GRM and processing technique is a key factor for achieves the desired properties.
In the presentation we will describe the influence of the GRM and processing technologies for the preparation of multifuctional composites with electrical and/or thermal conductivity, mechanical performance, fire retardancy, barrier properties and the potential market and actual large volume application in the polymer composites sector.
Julio Gomez
CEO @ Avanzare
Bio
He received his B.S. degree in Chemistry from Universidad Complutense de Madrid (1995) receiving the best B.S. degree in Chemistry in 1995 award in the University Complutense de Madrid. Ph.D. in Chemistry (2000) from University of La Rioja, best PhD degree in Science and Technology award in the University of La Rioja from the years 1999-2000
Postdoctoral researcher position in the Laboratoire de Synthèse Organique, University of Nantes-CNRS.After finishing his Ph.D, he spent 3 years as assistant Professor in Universidad de La Rioja and 2 years as an Area Manager in the research centre CIDETEC studying electrochemical systems.
He was the founder of AVANZARE at the end of 2004. He is actually the President of the Board of Directors of Avanzare.
He is the president of the Spanish Graphene Alliance.
He has received the National Award Entrepreneur of the year 2008 in Spain by the ministry of industry.
He has also received the best product award NANOAWARDS 2008 (USA). F&S best practices award in innovation 2013 (UK) for graphene composites. Finalist of the National Awards in Excellence 2013 and finalist of Innovation in SME awards 2018.
Member of the Executive board of the Chamber of Commerce from La Rioja from 2010. He is member of the Social Council of La Rioja University elected by the Regional Parliament from 2012.
Inventor in 12 patents all of them under exploitation or licenced. Author of 62 papers and 7 books (H factor 28).
Multifunctional Composites Using Graphene Materials
04:50pm
The application bulk graphene materials in composites is predicted to be the largest market for graphene. Several products based on composites, mainly in sport good sector, claims that are based on graphene materials (GRMs).
GRMs are a family of materials with remarkable differences in morphology, aspect ratio, surface chemistry. An adequate selection of the GRM and processing technique is a key factor for achieves the desired properties.
In the presentation we will describe the influence of the GRM and processing technologies for the preparation of multifuctional composites with electrical and/or thermal conductivity, mechanical performance, fire retardancy, barrier properties and the potential market and actual large volume application in the polymer composites sector.
Julio Gomez
CEO @ Avanzare
Bio
He received his B.S. degree in Chemistry from Universidad Complutense de Madrid (1995) receiving the best B.S. degree in Chemistry in 1995 award in the University Complutense de Madrid. Ph.D. in Chemistry (2000) from University of La Rioja, best PhD degree in Science and Technology award in the University of La Rioja from the years 1999-2000
Postdoctoral researcher position in the Laboratoire de Synthèse Organique, University of Nantes-CNRS.After finishing his Ph.D, he spent 3 years as assistant Professor in Universidad de La Rioja and 2 years as an Area Manager in the research centre CIDETEC studying electrochemical systems.
He was the founder of AVANZARE at the end of 2004. He is actually the President of the Board of Directors of Avanzare.
He is the president of the Spanish Graphene Alliance.
He has received the National Award Entrepreneur of the year 2008 in Spain by the ministry of industry.
He has also received the best product award NANOAWARDS 2008 (USA). F&S best practices award in innovation 2013 (UK) for graphene composites. Finalist of the National Awards in Excellence 2013 and finalist of Innovation in SME awards 2018.
Member of the Executive board of the Chamber of Commerce from La Rioja from 2010. He is member of the Social Council of La Rioja University elected by the Regional Parliament from 2012.
Inventor in 12 patents all of them under exploitation or licenced. Author of 62 papers and 7 books (H factor 28).
Achim Hoffmann
Investment Director
Unicorns – a privately funded start-up valued at $1 billion or more - are every Venture Capital Investor’s dream. It typically requires a highly disruptive and scalable technology targeting a large and growing market. The Materials Sector has however not been the posterchild for VC investors. IP Group has been active in this sector by supporting University spin-outs for the last 20 years and this is to share some of the lessons learned and suggestions on how this (almost) untapped unicorn source might eventually get unlocked.
Achim Hoffmann
Investment Director @ IP Group
Bio
Achim has been working in the entrepreneurial scientific tech sector for the last 20 years after raising government grant funding for his water disinfection technology start-up before joining IP Group as Deep Tech Investor in 2013. He launched his career at the Cleantech Fraunhofer Institute IUSE as an expert for membrane process development mainly for water applications but also got involved in a wide range of other industrial cleantech projects. Later he joined McKinsey & Company initially in the Düsseldorf and then the London Office as a strategy consultant working across a variety of client industries addressing mainly strategic client issues. Achim received his Chemical Engineering Diploma and Dr Degrees from Universities in Karlsruhe (KIT) and Dortmund, Germany. He also holds an MBA from Kellogg. While being involved in a wide variety of physical science investment propositions and heavily involved in the hands-on business building of portfolio companies at IP Group, he is specifically interested in material, engineering and water related opportunities.
Hunting The Material Unicorns
05:25pm
Unicorns – a privately funded start-up valued at $1 billion or more - are every Venture Capital Investor’s dream. It typically requires a highly disruptive and scalable technology targeting a large and growing market. The Materials Sector has however not been the posterchild for VC investors. IP Group has been active in this sector by supporting University spin-outs for the last 20 years and this is to share some of the lessons learned and suggestions on how this (almost) untapped unicorn source might eventually get unlocked.
Achim Hoffmann
Investment Director @ IP Group
Bio
Achim has been working in the entrepreneurial scientific tech sector for the last 20 years after raising government grant funding for his water disinfection technology start-up before joining IP Group as Deep Tech Investor in 2013. He launched his career at the Cleantech Fraunhofer Institute IUSE as an expert for membrane process development mainly for water applications but also got involved in a wide range of other industrial cleantech projects. Later he joined McKinsey & Company initially in the Düsseldorf and then the London Office as a strategy consultant working across a variety of client industries addressing mainly strategic client issues. Achim received his Chemical Engineering Diploma and Dr Degrees from Universities in Karlsruhe (KIT) and Dortmund, Germany. He also holds an MBA from Kellogg. While being involved in a wide variety of physical science investment propositions and heavily involved in the hands-on business building of portfolio companies at IP Group, he is specifically interested in material, engineering and water related opportunities.
Martin Lohe
CEO
Sixonia Tech has developed a process that creates the ability to functionalize few-layer graphenes deliberately and precisely, directly during their production. Compared to other “graphene” products, our E-Graphenes show a superior combination of tailorable properties within a single material, such as large flake-size in the µm-range, low thickness in the range of typically 1-5 layers and good processability. Unlike in (r)GO, the defined functional groups can provide an improved processability, while still maintaining high electrical conductivity and reasonable sheet size.
Our scalable and eco-friendly electrochemical process opens up new possibilities and prospects for the applications of graphene, in the field of inks, composites, sensors, energy storage and energy conversion. As an example, our E-Graphenes can be functionalized to be dispersible in water without the need for surfactants, while still maintaining an intrinsic conductivity that is at least one order of magnitude higher than that of commonly used reduced graphene oxide (rGO) materials. In contrast to liquid phase exfoliated (LPE) graphene materials, the absence of surfactants can also significantly increase achievable conductivities after deposition and reduce the number of necessary downstream processing steps.
Processable Few-Layer Graphenes via Functionalization – The Holy Grail towards Commercialization
05:40pm
Sixonia Tech has developed a process that creates the ability to functionalize few-layer graphenes deliberately and precisely, directly during their production. Compared to other “graphene” products, our E-Graphenes show a superior combination of tailorable properties within a single material, such as large flake-size in the µm-range, low thickness in the range of typically 1-5 layers and good processability. Unlike in (r)GO, the defined functional groups can provide an improved processability, while still maintaining high electrical conductivity and reasonable sheet size.
Our scalable and eco-friendly electrochemical process opens up new possibilities and prospects for the applications of graphene, in the field of inks, composites, sensors, energy storage and energy conversion. As an example, our E-Graphenes can be functionalized to be dispersible in water without the need for surfactants, while still maintaining an intrinsic conductivity that is at least one order of magnitude higher than that of commonly used reduced graphene oxide (rGO) materials. In contrast to liquid phase exfoliated (LPE) graphene materials, the absence of surfactants can also significantly increase achievable conductivities after deposition and reduce the number of necessary downstream processing steps.
Ricardo Oliveira
CTO and Co-Founder
There are many companies worldwide claiming to produce “graphene materials” but showing huge disparity in their properties. Because of that, many industrial applications were hindered by quality and price of graphene. In this space, 2D Materials Pte. Ltd. (2DM) manufactures high-performance graphene at industrial scale as an industrial additive to enhance many industrial products, such as batteries, coatings, and composites. Our vision is to expand the frontier of materials application using high-performance graphene. Some examples of customer’s trials will be presented, and the performance-price and price-volume correlations will be discussed focusing on the value added to customers’ products.
Mass production of True 2D Graphene
05:55pm
There are many companies worldwide claiming to produce “graphene materials” but showing huge disparity in their properties. Because of that, many industrial applications were hindered by quality and price of graphene. In this space, 2D Materials Pte. Ltd. (2DM) manufactures high-performance graphene at industrial scale as an industrial additive to enhance many industrial products, such as batteries, coatings, and composites. Our vision is to expand the frontier of materials application using high-performance graphene. Some examples of customer’s trials will be presented, and the performance-price and price-volume correlations will be discussed focusing on the value added to customers’ products.
Emre Heves
CEO
Graphene quantum dots (GQD), offers new application opportunities due to its bandgap tunability through quantum confinement and edge effects, stable photoluminescence, chemical stability and low toxicity. Owing to their excellent optical, thermal and electrical properties, GQDs have generated enormous excitement in different applications such as bio-imaging, optical sensors and photovoltaic devices. In this talk, unique properties and applications of GQDs will be presented together with Quantag’s approach of using GQDs for product authentication applications.
Graphene Quantum Dots for Product Authentication Applications: First Commercial Applications
06:16pm
Graphene quantum dots (GQD), offers new application opportunities due to its bandgap tunability through quantum confinement and edge effects, stable photoluminescence, chemical stability and low toxicity. Owing to their excellent optical, thermal and electrical properties, GQDs have generated enormous excitement in different applications such as bio-imaging, optical sensors and photovoltaic devices. In this talk, unique properties and applications of GQDs will be presented together with Quantag’s approach of using GQDs for product authentication applications.
Highly Conductive Green Graphene – Scaling Up Production of Graphene from Biomass
06:25pm
Erik Khranovskyy
CEO
Textile is the natural interface coating the average human appr. 95% of lifetime and beyond. Ability to read and deliver electrical signals to human skin would enable constant human-machine interaction as a part of future digital world. So far, textile conductivity was realized either by incorporation of conductive threads during manufacturing or via applying a conductive paint onto its surface after manufacturing. We have developed a method for fabrication of electrically active fabric via coating the textile fibres on the nanoscale level. Upon adding 2gr/sqm of graphene, the textile becomes conductive, but preserves its original properties – softness and permeability. Such lightweight, flexible and breathable textiles can enable the future digital textile interfaces for human-machine interaction.
Graphene Enabled Digital Textile Interface
06:40pm
Textile is the natural interface coating the average human appr. 95% of lifetime and beyond. Ability to read and deliver electrical signals to human skin would enable constant human-machine interaction as a part of future digital world. So far, textile conductivity was realized either by incorporation of conductive threads during manufacturing or via applying a conductive paint onto its surface after manufacturing. We have developed a method for fabrication of electrically active fabric via coating the textile fibres on the nanoscale level. Upon adding 2gr/sqm of graphene, the textile becomes conductive, but preserves its original properties – softness and permeability. Such lightweight, flexible and breathable textiles can enable the future digital textile interfaces for human-machine interaction.
Stephen Hodge
CTO
Versarien plc is an advanced engineering materials group. Leveraging proprietary technology, the group creates innovative engineering solutions for its clients in a diverse range of industries. Our UK subsidiaries are leaders in the field of graphene and related layered materials (GRMs) production and commercialisation; 2-DTech Ltd., which specialises in the supply, characterisation and early stage development of graphene products; ACC Cyroma Ltd, which specialises in the supply of vacuum-formed and injection-moulded products to the automotive, construction, utilities and retail industry sectors; and Cambridge Graphene Ltd. supplies novel inks based on graphene and related materials to develop graphene materials technology for licensing to manufacturers.
This talk will briefly outline our ambitious GSCALE programme to accelerate the scale-up of 5 manufacturing approaches; and will create shop floor QC processes to facilitate the efficient delivery of required volume production of graphene powders, dispersions, compounds and masterbatches. Our approach is to move “SCALE” products to TRL8/9 through testing, validation and technical improvements to achieve required standards in volume opportunities.
G-SCALE: Accelerating the Commercialisation of Graphene
06:58pm
Versarien plc is an advanced engineering materials group. Leveraging proprietary technology, the group creates innovative engineering solutions for its clients in a diverse range of industries. Our UK subsidiaries are leaders in the field of graphene and related layered materials (GRMs) production and commercialisation; 2-DTech Ltd., which specialises in the supply, characterisation and early stage development of graphene products; ACC Cyroma Ltd, which specialises in the supply of vacuum-formed and injection-moulded products to the automotive, construction, utilities and retail industry sectors; and Cambridge Graphene Ltd. supplies novel inks based on graphene and related materials to develop graphene materials technology for licensing to manufacturers.
This talk will briefly outline our ambitious GSCALE programme to accelerate the scale-up of 5 manufacturing approaches; and will create shop floor QC processes to facilitate the efficient delivery of required volume production of graphene powders, dispersions, compounds and masterbatches. Our approach is to move “SCALE” products to TRL8/9 through testing, validation and technical improvements to achieve required standards in volume opportunities.
Craig Dawson
Applications Manager
Strength improvements of up to 50% could lead to reduced concrete quantities for a specific application. Combined with other advantages such as barrier and migration properties mean graphene concrete could lead to disruptive concrete performance without disrupting current production processes. Successful roll out these breakthroughs has the potential to transform the construction industry and Nationwide Engineering Group have formed Concretene Ltd to expedite this. Working together with world leading centres of expertise in graphene production and structural engineering our vision is to exploit the full potential, revolutionise current practice, and place the UK at the global forefront of construction technology for many years to come. www.concretene.co.uk
Graphene Enhanced Concrete
01:10pm
Strength improvements of up to 50% could lead to reduced concrete quantities for a specific application. Combined with other advantages such as barrier and migration properties mean graphene concrete could lead to disruptive concrete performance without disrupting current production processes. Successful roll out these breakthroughs has the potential to transform the construction industry and Nationwide Engineering Group have formed Concretene Ltd to expedite this. Working together with world leading centres of expertise in graphene production and structural engineering our vision is to exploit the full potential, revolutionise current practice, and place the UK at the global forefront of construction technology for many years to come. www.concretene.co.uk
Alex McDermott
Director
Strength improvements of up to 50% could lead to reduced concrete quantities for a specific application. Combined with other advantages such as barrier and migration properties mean graphene concrete could lead to disruptive concrete performance without disrupting current production processes. Successful roll out these breakthroughs has the potential to transform the construction industry and Nationwide Engineering Group have formed Concretene Ltd to expedite this. Working together with world leading centres of expertise in graphene production and structural engineering our vision is to exploit the full potential, revolutionise current practice, and place the UK at the global forefront of construction technology for many years to come. www.concretene.co.uk
Graphene Enhanced Concrete
01:10pm
Strength improvements of up to 50% could lead to reduced concrete quantities for a specific application. Combined with other advantages such as barrier and migration properties mean graphene concrete could lead to disruptive concrete performance without disrupting current production processes. Successful roll out these breakthroughs has the potential to transform the construction industry and Nationwide Engineering Group have formed Concretene Ltd to expedite this. Working together with world leading centres of expertise in graphene production and structural engineering our vision is to exploit the full potential, revolutionise current practice, and place the UK at the global forefront of construction technology for many years to come. www.concretene.co.uk
15 Apr 2021
TATA Steel
Durable Anti-Corrosion Graphitic Carbon Coatings for Battery Applications
Read the abstract
Thursday
01:30pm
Erdni Batyrev
Material Scientist
Nickel-electroplated steel coated with a CVD graphene, has been found to act as a durable barrier to nickel oxidation in ambient conditions. Roll to roll production may be facilitated through the excellent catalytic performance of the nickel to give complete coverage with limited stacking. The superior protection of the nickel surface by graphene, in combination with improved electrical conductivity, brings an added value to existing applications and opens up potential applications in photovoltaics, energy transfer and energy storage.
An innovative and environmentally friendly process of growing multilayer graphene-based films by extracting atomic carbon from various steel grades will be presented.
Durable Anti-Corrosion Graphitic Carbon Coatings for Battery Applications
01:30pm
Nickel-electroplated steel coated with a CVD graphene, has been found to act as a durable barrier to nickel oxidation in ambient conditions. Roll to roll production may be facilitated through the excellent catalytic performance of the nickel to give complete coverage with limited stacking. The superior protection of the nickel surface by graphene, in combination with improved electrical conductivity, brings an added value to existing applications and opens up potential applications in photovoltaics, energy transfer and energy storage.
An innovative and environmentally friendly process of growing multilayer graphene-based films by extracting atomic carbon from various steel grades will be presented.
Qingkai Yu
Senior Researcher
Graphene shows their promising application in electronic devices, functional thin films and MEMS. The extraordinary performance of graphene devices can only be obtained with the reliable fabrication of high-quality graphene. Our goal is to fabricate the wafer-size single crystalline graphene with atomic smoothness. Our products include 2”-8” monolayer single crystalline graphene grown on Cu film, CuNi alloy film, Ge. We also provide polycrystalline graphene wafer directly grown on silicon oxide/Si without metal layer. Furthermore, we also have the capability to fabricate h-BN thin film with thickness from one layer to multilayer up to 30 nm.
Graphene & h-BN Wafers by Chemical Vapor Deposition
02:50pm
Graphene shows their promising application in electronic devices, functional thin films and MEMS. The extraordinary performance of graphene devices can only be obtained with the reliable fabrication of high-quality graphene. Our goal is to fabricate the wafer-size single crystalline graphene with atomic smoothness. Our products include 2”-8” monolayer single crystalline graphene grown on Cu film, CuNi alloy film, Ge. We also provide polycrystalline graphene wafer directly grown on silicon oxide/Si without metal layer. Furthermore, we also have the capability to fabricate h-BN thin film with thickness from one layer to multilayer up to 30 nm.
Samuel Esarey
Senior Research Chemist
Two challenges that must be overcome to reach the potential of graphene in electronics and energy storage applications are: industrial scale quantities of high-quality graphene (properties closest to the single layer graphene) and its integration to the material composite (polymer matrix). In this presentation, PPG and Raymor will present their industrial scale production of few-layer graphene by plasma method and the different techniques to properly disperse and incorporate the powder into both water based and solvent based formulations at high loadings. This resulting graphene forms part of the novel high energy density Si-based anode material developedby NanoGraf that has the long-term potential to replace graphite-based anodes in lithium-ion batteries for a range of applications, from consumer electronics to electric vehicles.
Customizing Graphene Dispersions: A Key Step in Realizing Graphene Batteries
02:53pm
Two challenges that must be overcome to reach the potential of graphene in electronics and energy storage applications are: industrial scale quantities of high-quality graphene (properties closest to the single layer graphene) and its integration to the material composite (polymer matrix). In this presentation, PPG and Raymor will present their industrial scale production of few-layer graphene by plasma method and the different techniques to properly disperse and incorporate the powder into both water based and solvent based formulations at high loadings. This resulting graphene forms part of the novel high energy density Si-based anode material developedby NanoGraf that has the long-term potential to replace graphite-based anodes in lithium-ion batteries for a range of applications, from consumer electronics to electric vehicles.
Norma Mendoza
Plasma Specialist
Two challenges that must be overcome to reach the potential of graphene in electronics and energy storage applications are: industrial scale quantities of high-quality graphene (properties closest to the single layer graphene) and its integration to the material composite (polymer matrix). In this presentation, PPG and Raymor will present their industrial scale production of few-layer graphene by plasma method and the different techniques to properly disperse and incorporate the powder into both water based and solvent based formulations at high loadings. This resulting graphene forms part of the novel high energy density Si-based anode material developedby NanoGraf that has the long-term potential to replace graphite-based anodes in lithium-ion batteries for a range of applications, from consumer electronics to electric vehicles.
Graphene as an additive in energy storage and electronic applications - a story of success in battery anodes
02:53pm
Two challenges that must be overcome to reach the potential of graphene in electronics and energy storage applications are: industrial scale quantities of high-quality graphene (properties closest to the single layer graphene) and its integration to the material composite (polymer matrix). In this presentation, PPG and Raymor will present their industrial scale production of few-layer graphene by plasma method and the different techniques to properly disperse and incorporate the powder into both water based and solvent based formulations at high loadings. This resulting graphene forms part of the novel high energy density Si-based anode material developedby NanoGraf that has the long-term potential to replace graphite-based anodes in lithium-ion batteries for a range of applications, from consumer electronics to electric vehicles.
Brunetto Martorana
Anonino Veca, Fulvio Cascio, Francesco Gazza, Chiara Mastropasqua, Brunetto Martorana
The global automotive industry is currently facing great challenges, such as responsibility for increasing CO2 emissions, lack of strong decarbonisation targets, and safety issues. It is also widely viewed as being the industry in which the greatest volume of advanced composite materials will be used in the future to produce light vehicles.
The study of novel composite materials, including graphene-based composites, and their potential applications in automotive industry, will be strategic for developing new lightweight and multifunctional structures for the automotive sector.
Graphene: Opportunities For Multifunctional Lightweight Structures In Automotive Sector
03:10pm
Anonino Veca, Fulvio Cascio, Francesco Gazza, Chiara Mastropasqua, Brunetto Martorana
The global automotive industry is currently facing great challenges, such as responsibility for increasing CO2 emissions, lack of strong decarbonisation targets, and safety issues. It is also widely viewed as being the industry in which the greatest volume of advanced composite materials will be used in the future to produce light vehicles.
The study of novel composite materials, including graphene-based composites, and their potential applications in automotive industry, will be strategic for developing new lightweight and multifunctional structures for the automotive sector.