Novel Electrolyte Additives for Denser, Longer Lasting, and More Efficient Aqueous Batteries
Batteries RESHAPED 2026
11 February 2026
Online
TechBlick Platform
Water-based batteries that utilize safe, economical, scalable, and sustainable metals like iron, zinc, and lead are attractive options for meeting the daunting energy storage needs of the future. These batteries are generally nonflammable, reliable, rugged, widely sourced, economical, long-lasting, and easily recyclable, making them a more ideal fit for large-scale storage. However, if aqueous batteries are to compete with mature and well-supported incumbents (i.e. lithium batteries), aqueous battery performance must improve and scale very quickly. To help optimize aqueous batteries rapidly, organic electrolyte additives offer an elegant and impactful option.
With careful design, informed empirically via hundreds of molecular candidates, organic additives have been identified that selectively prevent dendrite formation, hydrogen evolution, shape change, and other deleterious side reactions in a variety of aqueous batteries: different metals, cathodes, pHs, and salts. As presented in this talk, additives have been created that can raise battery capacity by 25%, round trip efficiency by 10%, and cycle life by 100%. This talk will discuss the approach used to identify and elucidate the molecular design principles employed as well as the impact and sensitivity of organic molecular structure on aqueous battery performance.






