Inkjet printed Flexible and Free Design OPV Modules for Indoor Application
The Future of Photovoltaics: Organic, Perovskites, CIGS, Hybrid 2021
1 December 2021
Online
TechBlick Platform
Over the last decade, organic solar cells (OSCs) have become a promising technology for next generation solar cells combining novel properties such as light weight, flexibility, or color design with large-scale manufacturing with low environmental impact. However, the main challenge for OSC will be the transfer from lab-scale processes to large-area industrial solar cell fabrication. High efficiencies in the field of OSCs are mainly achieved for devices fabricated under inert atmosphere using small active areas, typically below 0.2 cm2. So far, a small lab scale devices have now reached performances above 18%.
Apart from traditional large scale outdoor application, organic photovoltaic cells and modules are also of interest for powering small, off-grid electronic devices indoors. In this context, the main challenge for organic photovoltaic technology will be the transfer from lab-scale processes to large-area industrial modules fabrication under inert atmosphere using green solvent. In this light, inkjet printed highly efficient organic photovoltaic modules under indoor illumination were demonstrated by Dracula Technologies even for low lighting condition (<50 lux) by using new specific indoor materials and device structure. To prove the great advantage of inkjet printing as a digital technology allowing freedom of forms and designs, particular organic modules with different artistic shapes were demonstrated keeping high performance under indoor conditions. Reported results confirm that inkjet printing has high potential for the processing of OPV, allowing quick changes in design as well as the materials.
Reported results confirm that inkjet printing has high potential for the processing of OPV, allowing quick changes in design as well as the materials.






