Electronic Resurgence Initiative Briefing
Electronics Packaging Symposium 2021 (organised by Binghamton University)
4 November 2021
Online
Online
The DARPA Microsystems Technology Office (MTO) Electronics Resurgence Initiative (ERI), initially announced in 2017, is a response to several technical and economic trends in the microelectronics sector. Among these trends, the rapid increase in the cost and complexity of advanced microelectronics design and manufacture is challenging a half-century of progress under Moore's Law, prompting a need for alternative approaches to traditional transistor scaling. Meanwhile, non-market foreign forces are working to shift the electronics innovation engine overseas and cost-driven foundry consolidation has limited Department of Defense (DoD) access to leading-edge electronics, challenging U.S. economic and security advantages. Moreover, highly publicized challenges to the nation's digital backbone are fostering a new appreciation for electronics security-a longtime defense concern.
ERI ensures far-reaching improvements in electronics performance well beyond the limits of traditional scaling. The programs make a significant investment to create a more specialized, secure, and automated electronics industry that serves the needs of both defense as well as the domestic commercial sectors. Building on the tradition of other successful government-industry partnerships, ERI aims to forge forward-looking collaborations among the commercial electronics community, defense industrial base, university researchers, and the DoD to address these challenges. Given today's cost, complexity, and security challenges, the nation now stands ready to collaboratively innovate the next wave of electronics progress.
Leveraging 3D heterogeneous integration, the next wave should support continuing electronics progress despite challenges to traditional silicon scaling. This integration will enable innovators to both add new materials and devices to the silicon foundation and create specialized functions precisely designed to meet the diverse needs of the commercial and defense sectors. To manage the complexity of working in three dimensions, the next wave will also demand new architectures and design tools that address rising design costs, enable rapid system upgrades, and make security integration a primary design concern.
Bio: Dr. Carl E. McCants is a special assistant to the DARPA director, focusing on the Microsystems Technology Office's (MTO) Electronics Resurgence Initiative (ERI) and the National Network for Microelectronics Research and Development.
Prior to his role at DARPA, he was the technical director of the Supply Chain and Cyber Directorate of the National Counterintelligence and Security Center (NCSC), in the Office of the Director of National Intelligence. McCants provided scientific and technical input and briefed senior government leaders on national-level supply chain integrity issues. He also provided subject matter expertise on microelectronics-related supply chain concerns.
From 2012 to 2018, McCants was a senior program manager at the Intelligence Advanced Research Projects Activity (IARPA), managing the Rapid Analysis of Various Emerging Nanoelectronics (RAVEN) program, the Trusted Integrated Chips (TIC) program, and the Circuit Analysis Tools (CAT) program. His IARPA programs earned him the Intelligence Community's Science & Technology Individual Contributor Award for FY2016.
From 2010 to 2012, he was a program manager in MTO at DARPA, focused on microelectronic integration and hardware assurance and reliability. From 2003 to 2009, he was an associate at Booz Allen Hamilton, where he served as the chief technologist to the director of MTO, and special assistant to the DARPA deputy director.
From 1999 to 2003, McCants was a project manager at Agilent Technologies' Semiconductor Products Group where he was responsible for front-end and back-end optical and electrical characterization of photonic devices, and automated test platform development. From 1988 to 1999, he was a development engineer at Hewlett-Packard's Optical Communication Division, where he focused on materials characterization, wafer fabrication, and photonic measurements of LEDs and lasers.
McCants received his bachelor's degree from Duke University in 1981 and his master's and doctoral degrees from Stanford University in 1982 and 1989, respectively, all in electrical engineering. He is a senior member of the IEEE.






