Printing graphene with COLFEED4Print feedstock
Graphene Connect 2026
10-03-2026
Online
TechBlick Platform
AM enables the design of 3D electrodes with larger active surface areas, improving electrochemical performance beyond conventional methods. Graphene are highlighted for its electronic properties, and sustainable origin, but suitable feedstocks for AM remain limited. The work presented develops metal free conductive filaments for material thermal extrusion (MTE), using PLA composites with 15 vol% colloidal graphene. Surface modification improves dispersion and bonding, orienting the inorganic phase during printing. These filaments were characterized for thermal, mechanical, and electrical behaviour, and then used to print complex electrodes. The resulting electrodes showed enhanced electrochemical properties, with tailored microstructures that increased conduction paths and achieved high electrical conductivity (>1000 S·m⁻¹). Beyond electrochemical storage, graphene based composites fabricated by AM can be used in applications where conductivity and mechanical flexibility are critical. The integration of graphene into AM feedstocks not only advances electrochemical devices but also opens pathways toward multifunctional materials across healthcare, energy, and industrial technologies. During the presentation performance of graphene in printed devices will be described.



