Avantama perovskite QDs for miniLED backlights and microLED displays
Quantum Dots: Material Innovations and Commercial Applications 2022
30-11-2022
Online
TechBlick Platform
Perovskite quantum dots are well known for their unmatched color purity but unfortunately also for their strong tendency to degrade under humidity, temperature and blue flux due to the fact that perovskite quantum dots are based on a halide salt compositions. Over the last 7 years we have intensively worked on our green perovskite quantum dots and achieved a near- unity quantum efficiency, an FWHM of 22nm and last but not least a sufficient stability against humidity, temperature and blue flux turning our perovsite QDs commercially viable now. In this presentation we give an overview about our technical perovskite solutions for miniLED backlight films (LCD displays) and also QD pixelated color converters (QD-PCC) for microLED displays.
A color conversion film with green and red color conversion materials is needed for mini-LED based LCD displays because the traditional approach of using phosphors on-chip does not work for such displays due to technical limitations. Thus we present different color conversion films with our green perovskite QDs and different red conversion materials and show the benefits these films will bring to LCD displays and the LCD industry in general.
MicroLED displays are getting more mature and are close to market-entry but one of the main challenges is manufacturing costs due to chip mass transfer and involved pixel repair processes of red, green and blue microLEDs. Therefore the microLED industry requests green and red QD color conversion materials to be able to only use blue LED chips in the manufacturing process. Perovskite QDs also excel in this type of application due their advantageous properties including highest absorbance, lowest FWHM and highest quantum efficiency. Here we present our development status for QD-PCC materials based on green perovskite QDs including optical properties and different pixel deposition processes.



